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1.0 INTRODUCTION

Ionograms contain as basic information the virtual

range versus frequency. The more advanced digital ionosondes

also measure amplitude, phase, polarization, incidence angle
and spectral signature of the echoes. This allows improved
methods for the conversion of the ionogram to vertical elec-

tron density profiles. This report discusses two different

efforts toward that goal. Section 2 describes the automatic

scaling of Digisonde ionograms, and Section 3 investigates
the possibility of solving the Schroedinger wave equation for

different potential functions in an effort to compare the 147

method with the full wave solution.
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2.0 ATOMATIC PROCESSING OF DIGITAL IONOCReIS

Automatic processing of ionograms has become possi-
ble with the availability of advanced digital sounders [Bibl

and Reinisch, 1978]. Since about 1970, when the first digital

ionograms were routinely recorded on magnetic tape, software

and hardware techniques for the automatic extraction of the

echo traces from the ionograms [Bibl et al, 1973] have beer

developed. The initial concept was to decide immediately

after transmission of each individual frequency which of the

received signals are echoes and to retain only the amplitudes

and heights of the identified echoes. This approach is

clearly inadequate for many scientific investigations in a

disturbed ionosphere where the researchers want to see the

complete range-versus-frequency display, i.e. the raw ionogram

with all the nuances in the signal characteristics. Bibl anA

Reinisch [1978] described the on- or off-line printing of Digi-

sonde ionograms using an optically weighted font (Optifont) to

retain the digital resolution in the quasi-analog ionogram

display (rigure 1), establishing the transition from the famil-

iar analog to the digital ionograms. It may suffice to record

on magnetic tape a limited number of "identified" echo points

per frequency for the archiving of routine ionograms or for

the monitoring of ionospheric trends [Buchau et al, 1978].

In areas with frequent occurrence of spread F, this approach

is ineffective unless the range spread for each frequency is

also recorded.

A different objective is the automatic calculation
of the vertical electron density profile. In that case, "the"

vertical echo trace must be extracted and oblique, ducted and

multiple echoes disregarded; a trace must be found within the
spread F signals, relying on amplitude, Doppler and incidence

angle information that are contained in the digital ionograms.
This is only possible by examining the ionogram in its en-

tirety. This report describes this approach for the auto-

2
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matic scaling of Digisonde ionograms recorded at the Goose

Bay Ionospheric Observatory (53.3N, 60.51 geographic, 64.617,

12.1U geomagnetic). Once the ordinary vertical-echo trace is

extracted from the fonogram, the electron density profile can

he calculated using the standard lamination technique [Beck-er,

19b71 or the profile-fitting method [luang and Reinisch, 19821,

the latter optimally suited for the case of automated data.

This method will be described in a later paper. The current

report discusses the accuracy of the autoscaling of the F-

trace during disturbed ionospheric conditions, e.g. spread F

and the mid-latitude trough. Since the technique for the auto-

scaling of the F-trace is not quite complete, we will not

describe it here.

2.1 The lonogram rata

The routine ionograms at Coose Bay measure and re-

cord amplitude, polarization, incidence angle and Doppler fre-

quency as a function of frequency and range. The lower part

of Figure 1 shows a quiet amplitude ionogram containing al

signals. Removal of the non-vertical and Y-polarization sig-

nals results in the upper ionogram of Figure 1, which is much

easier to scale automatically. As will be shown later, the

Y-trace data are not discarded; they are used for the accurate

determination of foF2. For bottomside ionograms, the C-tracc

is generally better presented than the Y-trace and our auto-

scaling effort concentrated therefore on the O-trace. This is

in contrast to topside ionograms where 0 and X-polarization

echoes dominate alternatingly [Reinisch and Puang, 19P2; see

also the Special Issue on Topside Sounding and the Ionosphere

of the Proceedings of the IFEF, Vol. 57, No. 6, June 1969].

Ideal ionograms like the one in Figure 1 pose no

difficulties for automatic scaling, yet they are useful. to

illustrate the scaling procedure. To start the scaling of the

F-trace, the ionogram for h' > 160 km is surveyed and the

4



"center window" is determined. The search for the complete 0-

trace starts at the center window, which is generally the best

defined part of the trace and as such can be identified most

reliably.

The tape recorded Digisonde ionograms are actually

composite ionograms, since each pixel, i.e. frequency-range-

bin, is accompanied by a status word [Eibl and Reinisch, 1978]

which gives the signal polarization (0 or X), the Doppler

frequency (four spectral lines), and the approximate incidence

angles (three directions). The current report discusses the

off-line processing of ionograms for which only the data

stored on tape are available. The processing algorithm is

tailored toward future on-line application in which case a

larger data set could be used, like separate 0 and Y ionograms.

2.2 Bottomside lonogram Scaling Algorithm-BISA

Efficient software was developed tThat determines

the O-echo trace h'(5) in about five seconds of CPU time on

the University of Lowell Cyber 71 computer or the AFCT CPr 66C(

machine. If the F-region scaling and the electron density

profile inversion routine are added, a total of about ten sec-

onds of CPU time is required.

Figures 2a and 2b show the flow chart and block dia-

gram for the main BISA program. The ionogram data are entered

from magnetic tape and unpacked in dual arrays of 128 ampli-

tudes and 128 status words for each ionogram frequency. Fach

functional unit of the processing sequence is I-riefly describee

in the following paragraphs.

Noise Elimination

For each sounding frequency an individual noise

threshold is determined since it is not white noise but man-

made interferers that generally obscure the ionospheric vCh-oes.

The typical signature of interference is a fairly constant

5
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distribution of amplitudes over the range bins, while the echo

amplitudes generally occupy only two or three range bins. The

most probable amplitude found over all range bins for a given

frequency is used to determine the noise threshold. The half-

poi vt aboVw the, most probable amplit iide on the amplitil(le prob-

ability curve is define! as signal tbreshold. During severe

spread F conditions thi most probable amplitude could be the

signal level, setting too high a threshold. To avoid this

problem two probability curves are formed, one for the lower

64 and one for the higher 64 range bins. The distribution

that peas at a lower amplitude sets the threshold [Reinisch

and Smith, 1976].

O-Echo Poles

In an effort to minimize the required CPU time the

program uses for certain tasks selected data points, called

the poles. For each frequency, the position of the first am-

plitude maximum of an O-echo between two zero amplitudes is

defined as pole. The number of poles per frequency is not

limited.

Elimination of E and F Fegion Double Echoes

Before beginning the trace identification, all data

points that are double echoes are eliminated. An F-region

pole at twice the range (±20 km) of a lower pole is checkled by

comparing the average Anplitudes over nine range bins of the

lower and upper echoes. If the upper average amplitude is

smaller the pole and all poles above it are removed.

The same method is applied to E-region echoes, ex-

cept that a 5-bin window is used. Elimination of double E

or Es echoes is important since they could otherwise be mis-

taken for F echoes.

F-Trace Center

During disturbed ionospheric conditions, it is often

difficult to identify the main overhead echo trace. At Coose

8%



Bay this is especially true when the mid-latitude F-region

trough moves over the station. The direction finding capa-

bility of the Digisonde identifies some of the oblique echoes

as such, but not all of them. By finding the frequency-range

window with maximum signal energy one can be reasonably sure

that the trace identification starts at a good point on the

main echo trace.

For each range the pole amplitudes for all frequen-

cies from the first Lonogram frequency to 10 Niz are adel.

Grouping three height ranges together, a search is mare for

the three largest peaks in this sum array. A 5-frequency by

3-range bin window is slid along each of the three maximum
ranges, and the sum over the amplitudes of the 15 pixels in

each window position is formed. The window position with the
maximum average amplitude is designated as F-trace center.
Coarse Baseline

As a first approximation of the echo trace the base-
line is constructed. A 5-frequency by 35-range bin winriox; is

placed over the trace center, and the median range h of all

poles within this window is determined. The lowest poles in

the interval hm - 5 < h < hm + 20 bins (bin spacing is 5 km)
are selected as baseline points. The window is shifteI one

step toward higher frequency and the next baseline point is
determined. In each window the range difference D between

the highest and lowest pole is determined. If D is larger

than 20 the upper height of the window is increased to hM + D.

If no pole is found for a frequency the range of the previous

frequency is substituted. The process stops when no pole is

found in five consecutive frequencies. It is assumed that

the end of the trace is found and the baseline point is giver

the range 128.

Starting again at the center, the process i,; re--

peated in the direction of lower frequencies. If not termin-

ated by the lack of proper poles, the process stops at f

9



foE - 0.3 M1Iz. Predicted values for foE are tabulateO as

function of time of day and season.

Smoothing of Baseline

The sequence of heights for the baseline points shows

some discontinuities that are caused by high interference on

some frequencies, and blank pixels that were originally occu-

pied by oblique or X-polarization echoes. A refined linear

smoothing technique is applied to adjust the heights of the

baseline points.

Consider the framed trace section in Figure 3. The

0-trace points are marked by small circles. In the framed sec-

tion the original baseline points are shown as small rectan-

gles if they differ from the final trace points. Smoothing is

performed over six frequencies, as illustrated in Figure 4.

The shaded areas show the amplitudes of the O-echoes, the

white areas the amplitude of oblique or X-echoes. The height

for frequency 5.3 is to be found; the heights for f = 5.4, 5.5

and 5.6 11z have already been adjusted. The smoothing starts

at the trace center and proceeds to the lower and to the upper

frequency end, respectively.

A straight line is fitted to any three of the six

frequencies, resulting in a total of 20 lines. The six pixel

amplitudes for each line are added and the line with the maxi-

mum amplitude determines the height of the frequency under in-

vestigation. Only three of the 20 possible lines are shown

in Figure 4. The heavy line is the one with the largest am-

plitude sum setting the height for f = 5.3 MIfz to 360 kin, as

marked by the A.

Determination of each line is based on the min-max

approach. The equal-error or Chebyshev [Scheid, 1968, p. 269]

line is determined which misses three given data points by

equal amounts with alternating signs (see the deivations -A,

+A and - in Figure 4). There exists exactly one such line

h = c + df (2.1)

10
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which is defined by the following three equations:

c + dfI - h1 = A (2.?)

c + df2 - h2 - -A (2.3)

c + df3 - h3 - A (2.4)

The solutions for c, d and A are:

c -h I + A - df1  (7 )

h3 - h I

A f [h2 - hI - d(f2 - fl)]. (..

Hyperbolic Trace Fitting in Cusp Region

If the ionogram data have polarization tagging, somc

curve fitting can be performed in the h'-f domain. The cusp
region of the ionogram trace can be described with reasonable

accuracy by a polynomial or a rational function. A sirple
rational function like

=b < 0 (2.8)hx = + bf'-

has a singularity at f = - a/b which serves well to fit the

trace near the critical frequercy. The same function trans-

posed to lower frequencies by half the gyrofrequency fB de-

scribes the corresponding 0-trace:

'= 1h1
h'= h0 + I f* = f fH 3 0 0  (2.9)

A reference height of 300 km is used for the calculation of

fH. Fitting simultaneously two curves to the cusp dnta makes

the method very robust. Even if one of the traces is absent,

the critical frequency is determined from the other trace.
The hyperbolas with the maximum sum of amplitudes in narrow

strips around them are selected to represent the 0 and X

13



I ?a+i'': I)I'1I1. t ie cr i L :f .1 f'requetic tea The optinmurt position ing

of the hyperbolas is illustrated in Figure 5 for a Goose Bay

ionogram :ith spread F. The range interval over which the

amplitudes are summed is given for each frequency by the

ranges of the preceding and the following frequency as shcwn

in Figure 5. The Digisonde ionogram used in this figure does

not show the signal amplitudes but instead the polarization

tags 0 and X, and the letter B indicating oblique echoes.

Only 0-amplitudes contribute to the 0-hyperbola's amplitude

summation and X-amplitudes to the X-hyperbola. The hyperbolic

traces for the cusp region that the program determined for the

ionogram in Figure 5 are marked by heavy dots (0-trace) and

X's (X-trace). The hyperbolic section of the trace ends where

the X-hyperbola intersects the baseline (3.5 MHz), and the

baseline then defines the trace toward lower frequencies.

Equations 2.8 and 2.9 have three coefficients h0 , a,

and b, which are determined according to the method of min-max

rational functions [Scheid, 1968, p. 289]. The baseline is

used as a guide in finding the best fit. Starting at the high

frequency end of the baseline, a hyperbola is fitted to the

last three baseline points by minimizing the distance x from

the hyperbola (see Figure 6). The hyperbola is determined in
such a way that the distances are x, -x and x, where x is a

positive or negative number. The range deviations of the

three points (fi, hj) from the curve are

1 -h + al - (-1)i - x i = 1, 2, 3. (2.10)

These equations can be written in the form (deleting the

primes on the heights):

(h I - h 0 - x)a + (hI - ho - x)f I b - I = 0 (2.11)

(h2 - h0 + x)a + (h2 - h0 + x)f2 b - I = 0 (2.12)

(h 3 - h 0 - x)a + (h3 - - x)f 3 b - 1 - 0 (2.13)

14
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From (2.11) and (2.12) one obtains

1 f1 1
a h hh0_x  T - hl-h x  h2_h0+x (2.14)

b - 1 ( 1 1 (2.15)r2 h1 -h0-x h2-h 0+x .I )

Elimination of a and b leads to a quadratic equation for th-,e

determination of x (Scheid, 1968, p. 289]:

1h I - h 0 - x (hI - h 0 - x) fl 1

h2 - h 0 + x (h2 - h0 + x) f 2  1 = 0

h3 - h0 - x (h3 - h0 - x) f3  1 (2.16)

or:

Ax 2 + Bx + C = 0 (2.17)

The coefficients A, B and C are:

A = 2 (fl - f3 ) (2.15)

B = B0 + Ah0  (2.19)

C = - C1 h0  (2.20)

where

B0 = - fI(h 3+2h 1-h 2) - f2 (h3-hl) - f3 (h2-2h3 -hl) (2.21)

C0 = fIhl(h 3 -h2 ) + f2h2 (hl-h3) + f3 h3 (h2 -hl) (2.2?)

SC1  fl(h 3 -h2 ) + f2 (hl-h3 ) + f3 (h2 -hl) (2.13)

Selecting the smaller of the two solutions for equation 2.17

we get:

- B-1 (2. 24)

B2
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The coefficients B and C are functions of the base height h0

(equation 2.8), wlich is not known. Inspection of equation
(?.2) shhw:1; that j: will be a minimum if 4AC/P2=-0. This

l;a, rnot be po.; i h..i to achiec\, , but one caIn Irv to fin(, tht

r.inimum value of JAC/ 2 . This is done by setting the deriv-

ative with respect to hp equal to zero:

d (__C (2.25)
d (AC)0 B2

resulting in

C1 B0 + 2 AC0  (

= AC2 (2.26)

Once ho and x are calculated from (2.26) and (2.24) the coeffi-

cients a and b can be calculated specifying the X-hyperbola.

The corresponding 0-hyperbola is simply determined by replac-

ing f by f *. Finally the 0 and X sums are determined.

It is of course unlikely that the hyperbola fitted

to the last three points (highest frequency) of the baseline

will be a good approximation for the X-trace in the cusp re-

region. So the process is repeated for the next three poirts

and so on, down to frequencies at the center window, and then

again for non-abutting points. If we number the baseline data

points from 1 to F, we can write the triple point sets to

which hyperbolas are fitted in the following way:

GROUP 1 GROUP 2 GROUP 3

P1I P 2 P 3 P I PF3 P 5 P 1 Ptj P 7

P2  P3  P4  P2  P4  P6  P2  P5 P8

PNF-2 P N-I rPN P 1-4 P - 2 P N PN1-6 P 1-3 P N

The total number of trial hyperbolas is close to 2N requiring

precious CPV time. A factor of two in time could be gaineO by

18



deleting Group I of the guiding points. From all these hyper-

bolas, the one with the maximum 0 and X amplitude sum is se-

lected for the trace representation.

0-Echo Trace

Combining the 0-hyperbola with the smootbed baseline

gives the echo trace for the O-polarization echoes. If the

Digisonde outputs complete 0 and X ionograms, as can be done

with the new Pigisonde 256, one can devise a complete C and X

trace. This would be of interest mainly for stations whc want

to study the ionization valley between E and F-region.

Figures 7 and 8 illustrate the performance of tle

scaling algorithm for Goose Bay ionograms with light spread.

The preliminary results for the E-region scaling are included

in these figures, together with the corresponding electron

density profiles.

Parameter Extraction

At the present time, the program determines the fol-

lowing F-region parameters: critical frequency of the F-

region, foF2, minimum height h'F, the 1(3000) factor and the

spread F figure. The foF2 value is obtained in the hyperbolic

fitting procedure as -a/b. The smallest range value in the

F-trace is used as h'F. The M(3000) factor is obtained from

the transformed oblique ionogram which is calculated from the

vertical ionogram trace by multiplying each frequency with the

transmission factor M(h') [Smith et al, 1979, p. 122:

ob = M(h')'f (2.27)

The transmission curve M(h') is calculated by fitting a poly-

nomial to the URSI specified data set [URSI Handbook of lono-

gram Interpretation and Reduction, Second Edition, November

1972, p. 21; World Data Center A Report UAG-23]. The MUF(3006),

obtained as the highest frequency in the oblique ionogrnn, is

divided by foF2 to find the M(3000) factor.

19
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For each ionogram an average spread F figure Sr is

determined by calculating the mean range sprend:

I foF?
SF foFfm- fminF Ah(f). (2.28)

fminF

The upper limit of the range spread Ah(f) is defined by a drop

in average echo amplitude (averaged over four range bins or

20 kan) by 12 dB or more below the average trace amplitude.

2.3 Performance Evaluation of the lonogram Scaling Algorithm

It is always easy to automatically scale a few se-

lected ionograms by tailoring the scaling algorithms to these

specific ionogram. The real test is the application of the

algorithm to a large number of ionograms covering day, nigl.t

and twilight as well as quiet and disturbed conditions. To

test the performance of the BISA program one month of iono-

grams, i.e. approximately 2000 ionograms, for January 1980

from Goose Bay, Labrador, were processed and the parameters

of the approximately 700 hourly ionograms were compared with

the manually scaled values.

2.3.1 Results of the Autoscaling

Figures 9, 10 and 11 show the diurnal and day to day

variations of foF2, h'F, and the spread F figure for January

1980 using the Optifont to visually enhance the variations.

With three ionograms per hour the 72 daily values are printe4

in one line with consecutive days following each other. The

foF2 values in Figure 9 are printed in increments of 0.5 MITz

although the original scaling resolution is 0.1 111z. From a

pre-sunrise minimum below 4 MITz at 07 AST, foF2 increases

rapidly after sunrise. When foF2 increases from 11.5 to 12

MHz the Optifont numbers go from 15 to 0, so the 12 MITz con-

tour line in Figure 9 is indicated as the sharp break in in-

22
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tensity. The highest foF2 values were observed around January

when foF2 reached values between 14.5 and 15 MHz. Later in

the month foF2 stayed at or below 12 MTz. The occurrence of

the F-layer trough becomes visible as a sudden decrease in

foF2 during the early evening hours on days 3, 5, 7, 11, 127,

28 and 29. Days 12 and 13 show irregular foF2 values indicat-

ing ionospherically disturbed conditions. Indeed, the nmagnctic

A-index was alove 45 on these days, while A < 25 on the other

days.

Figure 10 displays the h'F values in 10 km incre-

ments using the same format as the previous figure. The

height variations during the day hours are small except during

the disturbed days. The disturbed days and the occurrence of

the trough are even better indicated by the spread F figures

displayed in Figure 11. The numbers printed give the average

range spread in multiples of 5 km.

The difficulty of the scaling task is illustrated

by the sequence of ionograms in Figure 12 recorded in Coosc

Bay on 7 January 1980 between 1819 and 2039 AST. It is the

time when the F-region trough moves over the station causing

spread F and oblique echoes. The results of the autoscaling,

indicated by the small filled circles, are in good agreement

with manual interpretation. The amplitude ionograms in Figure

12 contain the 0 and X-echoes as well as oblique returns. If

reflections from the trough walls or other irregularities,

lie at 1959 AST, produce several retardation cusps in the

ionogram, the program most litkely selects the one with the

strongest amplitudes. A manual evaluator may scale foF2 at

1959 AST as 2.7 or 3.2 MHz, while the program scaled 4.3 Mllz

and jumped to the lower value at 2019 AST. These differences

in "interpretation" are the main contributor to errors in foF2

above 0.5 fTz.
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2.3.2 Comparing Manual and Autoscaling

Since manually scaled parameters for the hourly

ionograms were available, they were used as reference against

which the autoscaled values are compared. For a total of

about 570 ionograms the parameters foF2, h'F and fminF were

investigated for their accuracy. Ionograms with technical

errors were removed from the data base.

Figure 13 shows the error distribution function of

foF2 where the error is defined as the difference between the
manual and autoscaled value. The error distribution is Gaus-

sian in shape; 82% of all ionograms have errors of less than

0.5 Miz, and 93% fall within the 1 M1Hz limit. If the analysis

is limited to ionograms without spread F the statistics are

only slightly improved as can be seen in Figure 14. This

demonstrates BISA's success in the scaling of disturbed iono-

grams. The diurnal variation in the autoscaling of foF2 can

be checked in Figure 15. It is apparent that the scaling accu-

racy is higher for the day ionograms than for the night mea-

surements. This is expected because of the complicated signa-

ture of the night ionograms at Goose Bay.

Comparison of the median foF2 values shows very good

agreement between manual and autoscaling (Figure 16). Two

larger deviations occur at 1700 and .1900 AST which are caused

by differences in interpreting the ionograms in the presence

of oblique signals. The manual median values are based on the

URSI conventions regarding qualifying letters, no qualifica-

tions were used for the autovalues. This explains some of the

smaller deviations.

The error distribution functions for fninF an(d h'F
(Figures 17 and 18) verify the excellent performance of BISA.
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2.4 Summary and Outlook

By comparing the autoscaled ionospheric parameters

with manually scaled values for a whole winter month at Goose

Bay, it could be shown that the BISA program can be success-

fully employed even at stations with an unusual high rate of

ionospheric disturbances. The program must now be completed

by adding the E-region scaling algorithm and by specifying

some qualifying parameters. The basic concepts for these

tasks have been developed, so that the program can be com-

pleted within the next year. Solutions for the complementary

task of converting the autotrace into an electron density pro-

file are based on the profile-fitting method [Yuang and

Reinisch, 1982]. Ve originally developed and applied this

method to autoscaled topside ionograms. The necessary adjust-

ments for bottomside profiles will be made in the next year.

Efficiency in the computer coding, one of the

achieved design goals, makes it possible to implement the

software in an on-line ionogram processor, the so-callee real-

time ionogram scaler (RIS). The RIS will be based on the 8C86

microprocessor and uses Fortran 86 as source language.
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3.0 COMPARISON OF FULL WAVE THJEORY AND WKB APPROXIMATIOr

FOR DETERMINING IONOSPHERIC DENSITY PROFILES FRO!

REFLECTION COEFFICIENTS

3.1 The Full Wave Theory and the WKB Approximation. Time-

Delay From the Phase of the Reflection Coefficient.

[Cohen et al, 1982]

3.1.1 The Basic Wave Equation

Let E(z,t) be a component of the electric field per-

pendicular to the z-axis or vertical axis along which the

electron density is stratified. Then with

Ek(zt) = e- Wt Ek(Z)

(cu = ck) (3.1)

the equation for Ek(z,t) is [Budden, 1966, page 129]

d2

dz 2 Ek(z) + k 2 n 2 Ek(z) = 0 (3.2)

In (3.1) u is the angular frequency, k is the wave nurnber

in free space and n is the index of refraction given by

2  
- N(z)4Tre 2

n (3.3)
mc k

where m, e, c are the mass of the electron, the charge of the

electron and velocity of light in Gaussian cgs units.

In our discussion we have ignored electron colli-

sions and the effect of the earth's magnetic field. This

physical (as opposed to mathematical) approximation is often

assumed in ionospheric sounding methods. At the magnetic

equator, the earth's magnetic field is parallel to the earth's

surface and hence the polarization of the transmitted wave can

36

Mav



be chosen so that the magnetic field does not affect the scat-

tered wave. In other situations, the effect of the magnetic

field may also be eliminated [Budden, 1966]. The effect of

collisions is negligible at higher altitudes (z > 100 km). One

of the ultimate objectives of the present train of research is

to determine whether these physical approximations lead to

errors greater than those made by the mathematical approxima-

tions. In any case, we shall assume as is customary that the

use of Eq. (3.3) for the index of refraction is a good approxi-

mation for use in ionospheric sounding in certain geographical

regions.

Equation (3.2) can also be written

d- Ek(Z) + (k2 - V(z)) Ek(Z) 0 (3.4)dz2

where V(z) is given by

V(z) = K 11(z), with K = 4 e (3.4a)

inc
2

Equation (3.4) is the one-dimensional Schroedinger

equation which has been exhaustively studied. The potential

V(z) is essentially the number density IT(z).

In the direct problem of reflecting electromagnetic

waves from the ionosphere we assume V(z) (or N(z)) is very

small for z < z0 and z > z, .

We look for solutions of (3.4) which behave like

E(Z) = eikz + b(k) e- ikz for z < z0

= t(k) eikz for z > z1 . (3.5)

The quantities b(k) and t(k) are called the reflec-

tion and transmission coefficient respectively.
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For a wave with wave number k, we have

r(z,t) - ei ( Z -ct) + b(k) e-il,(Z+Ct), z < z

= t(k) eik(Zct), z > z 1  (3.6)

The boundary conditions (3.6) are interprete' to
21ir

mean that a plane wave with wave number k = -moves initially

toward the scattering potential V(z) and then is partially re-

flected. A transmitted wave on the other side of the poten-

tial propagates in the Z-direction.

Actually, one never sends an infinite plane wave to-

ward the potential (or ionosphere). Instead one sends a pulse

containing several wave lengths. This pulse can be represented

by

E(z,t) f f A(k) e-iWt Fk(z) dk , (3.7)
-00

and Is thus a superposition of the plane waves. The amplitude

factor A(h) has its peak value near or at the value of k = kc,

where k0 is the mean wave number which appears in the pulse.

One sends a pulse

iidet(Z,t) = A(k) eik( z -c t) dk (3.F)

and gets back a reflected pulse

+C0
Freflected(,t) = J Ak) b(k) e-ik(z+ct) dk. (3.0)

Since Eincident(z,t ) and Freflected(zt) are of finite extent

we can ask for the time for the reflected wave to return to
the transmitter. This time will depend on k0 . It is given

by

T(k0 ) 10(k)] evaluated at k -k (3.10)
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where O(k) is the phase of b(k); i.e.

b(k) I Ib(k) I eiO(k) . (3.11)

The virtual height hv is given by

1V

= cT(k 0 ) . (3.11a)

It should be remembered that the theory thus far is exact.

(In using (3.10) for the time delay it is convenient to thinV

of the transmitter as being located at z = 0.)

3.1.2 The Approximate Inverse Problem

The direct problem is, for our purposes, the follow-

ing: Given V(z) (or equivalently N(z)), find T(k).

The inverse problem is: Given T(k) for all k, find

V(z) (or Y(z)).

The approximate solution is obtained from the 17'P

approximation. Assume Ek(z) has the form

Eh(z) eiF(z) (3.12)

Substitute (3.12) into equation (3.2) to obtain

dF 2 = k2 n2 + i V F  (3.1.3)( .) =dz 2

which becomes a Riccati equation if y = dP/dz. An iteration

procedure can be started by assuming on the right of Fq. (3.13)
that k2n2 is large compared to d' i.e. n is large or n

dz2
varies slowly compared to the wave length [see Fay, 1954 for a

more careful analysis of domain of validity]. The first iter-

ation gives F' - kr while the second yields

F' = -krn (I + iF'-)1/2 Z ± kn (1 + -F11) + kn + i n'

k2n2  2k2n2
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which gives F by a integration. Since Eq. (3.13) is non-linear,

the two particular solutions of (3.13) cannot be superimposed

to find a general solution. iPowever, the solution F car be

substituted into Fq. (3.12) to obtain particular solutions

z
Ek(Z) = A [n(z)]-1/2 exp [ i k I n(z') dz'] (3.14)

zo

to Eq. (3.2). It should be remembered that n(z) is a function

of k (see Eq. (3.3)). We have suppressed this dependence on

the notation for simplicity. If one particular solution to

Eq. (3.2) is knownn, it can be used to give a first order lin-

ear equation which can be solved by quadratures thereby giving

the general solution. Alternatively, two distinct particular

solutions can be added to give the general solution of Eq.

(3.2) which is (within this approximation)

Ek(z) = A(k) [n(z)] exp [+ i k I n(z') dz'].
z 0

+ 1(k) [n(z)j-1/2 exp [- i k f n(z') dz']. (3.15)
z0

Using the first boundary condition of Eq. (3.6) and noting

n(z) = I for z - z0 , one finds

Ek(Z ) = eikz + b(k) e-ikz (z < z0 )

-ikze ikz ikzo e-ikz
- AWke e + B(k) e .-

Hence A(k) = eikz

-ikz0
B(k) - b(k) e (3.16)

Let zk be the value of z for which n(z) - 0, i.e. from Eq.

(3.3) and (3.4a)

V(zk) - k2 . (3.17)
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Our picture, the usual one, is that V(z) 0 for z < z 0 and

increases monotonically toward a maximum as z increases above

0 As k2 varies from 0 to the maxiTrum of V(zk), a zk is de-

fined by (3.17).

From (3.15), Ek(zk) unless

zk zI
A(k) exp[i k f n(z')dz'] + B(k) exp[- i k f n(z') dz'] = 0.z0  z00 0o (3.18)

Thus

zk
B(k) - A(k) exp[21k f n(z') dz']

z0

ikz 0  Z k
= - e exp[2ik f n(z') dz'] . (3.19)

z0

Or from (3.16)

2ikz, Zk
b(k) = - e exp[21k I n(z') dz'] . (3.20)

z0

The phase 0(k) of Eq. (3.11) is

zk

0(k) - i + 2 k [z 0 + I n(z') dz'] . (3.21)
0

Zo 0
z k  zkT(k) - Ezo + f n z,) dz, + f n . z,) dz,

c 0 z 0  c z 0

~2k Zk

+ - n (z ) k ( 3 . 2 2 )

But n(zk) - 0 by definition (see Fqs. (3.3) end (3.4)), also
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nn(z) 1 1

- - L- ]k'~z 1
z 2_V(z)

- - n(z) + knfz (3.23)

Thus finally

z 'T(k) =E[z +J jj r]

or

2 dz'
T(k) = [z + k f (3.24)

This is a wellzknown integral equation for V(z). Thezo

first term on the right - represents the time for the signal

to reach z0 and return to the transmitter at z - 0. If kI is
the lowest value of k for which there is a reflection, then

approximately

cT(k I )

Zo = k2 (3.25)

Now that z0 is determined approximately, one can find V(z)

(or N(z)) using Abel's method of inversion [Faddeev, 1958].
For each value of k one gets T(I<) experimentally. One then can

find V(z) (z0 < z < Zk) using Abel's method. This is the usual
procedure. Note if k > Vmax(z), the method fails.

3.1.3 The Exact Inverse Problem

The exact or full-wave theory version of the inverse

problem is developed in Kay, 1954 and Kay and Moses, 1956.
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Let b(k) be the reflection coefficient as in Eq.

(3.6). The potential can be recovered from a knowledge of

b(k) through the use of the Gelfand-Levitan algorithm. To be

specific, let us define R(z) by
+00

R(z) = (2)-* f b(k) e - ikz dk. (3.26)
CO

The reflection coefficient b(k) satisfies the following condi-

tions [see Kay, 1954; Kay and Moses, 1956; Faddeev, 1958].

b(-k) = b*(k), b(k) analytic in the upper half-plane,

b(O) = -1, R(z) 0 for z < 2z0. (3.27)

Let us define the Gelfand-Levitan kernel K(z,y) by

K(z,y) = 0 for either y > z, or z < z 0 . (3.28)

For y < z and at the same time z > z0 we require K(z,y) to

satisfy the Gelfand-Levitan equation:

z

K(z,y) = - R(z+y) - n(z+y-2z0 ) f K(z,u) R(u+y) du
20-y

(3.29)

where n(x) is the Heaviside function defined by n(x) 1 for

x > 0, n(x) = 0 for x < 0.

Having found the Gelfand-Levitan kernel K(z,y), V(z)

is given by the simple expression

V(z) - 2 d K(z,z) .(3.30)

However, the electric field Ek(z) can also be obtained using

z

Ek(z) = eikz + b(k) eikz + f K(z,u) [eiku + b(k) e -iku] du.
2z0 -Z (3.31)

Thus to find V(z) using the algorithm, we must ob-

tain the reflection coefficient b(k) from its phase.
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This is accomplished using the analytic properties

of b(k) and, hence, log b(k) and a generalized form of the

Hilbert transform. To be specific, (d/dk) (k) is found from

the time delay in accordance with Eq. (3.10). The phase 0(k)

is obtained by integration with the boundary condition 4(O)

= n. Let v(k) be defined by

v(k) - )(k) - 2kz 0  (3.32)

and w(k) by

w(k) - log lb(k)l (3.33)

then

W(k) kv(k') dk' (3.34)w~~k) -- . -k(k'-k) "

In Eq. (3.34), the symbol P means the principal part of the

integral.

It should be mentioned that there are variational

principles available [Moses, 1977] which enable one to obtain

V(z) when b(k) is known. These principles have an upper

bound built into them.

One also has available a generalization of the

Gelfand-Levitan algorithm. If, for a given reflection coeffi-

cient b0 (k), one knows the electron density 10(z), one can ob-

tain V(z) - V0 (z) in terms of b(k) - b0 (k) [Pechenick and

Cohen, 1981]. One can view this generalization as offering

at least two options. One may regard V(z) - V0 (z) as the

error in density due to an error b(k) - b0 (k) in the reflec-

tion coefficient. Or one ray think of V0 (z) as being the den-

sity associated with a time delay leading to b0 (k) having been

obtained from a model or a previous calculation (even using,

the WKB method). Then V(x) is obtained as a relatively small

change due to the change in the reflection coefficient. The

variational principle can also be used to obtain V(z) - 10(z)

from b(k) - bo(k) together with a bound on this difference.
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3.2 Comparison of the WKB Method with the Full-Wave Method

for Profiles for Which the Full-VTave Equation can be

Solved for Exactly.

3.2.1 General Outline of Research Procedure

The use of the UME approximation for the calculation

of electron density profiles is a well-established procedure.

As mentioned in the previous section, the VIKB approxination is

not exact. As part of our research effort we are considering

potentials V(z) (which, as seen above, is equivalent to con-

sidering number densities N(z)), for which the Schroedinger

equation can be solved for exactly and compare the exact

time delays (or equivalently virtual heights) with the time

delays which would be calculated from the potential using the

WKB approximation discussed in Section 3.1. A comparison of

the time-delays will give us some idea of how good the WIB ap-

proximation is. Surprisingly, perhaps, our work in this area

will probably be one of the few to compare exact time-delays

with WKB time delays, even though the WKB time-de lay has been

used for almost sixty years. The reason that this comparison

was not made earlier is that the Schroedinger equation ha

not been solved exactly for potentials V(x) for which the UIT'

approximation might be expected to give an accurate result.

However, in more recent years it is possible to construct po-

tentials from a given reflection coefficient for which the

Schroedinger equation can be solved exactly and in terms of

elementary functions. Thus having specified a reflection b(k)

and hence as part of the reflection coefficient, its phase and

thus the exact time-delay, we compute the potential. ITaving

the potential, it is then an easy matter to compute the WKB V

time-delay. The exact time-delay is then compared with the

WKB time-delay.

Using inverse methods it is possible to give a

class of potentials which are smooth and continuous ant? wlhich

would seem to model a single layer ionosphere insofar as the
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general shape is concerned. Since these potentials are ob-

tained from given reflection coefficients, the phase and

hence the time-delay are known exactly. From such examples

one can compute the time-delay using the WKPJ methud. The WM
time-delay bears no relation to the exact time-delays. In

the simplest case, which we discuss below, the scaling is in-

appropriate for the IME method to be valid despite the ap-

parent smoothness. Other examples remain to be examined for

scaling.

3.2.2 General Properties of the WKE Time-Delay. Failure

of the IWKB M:ethod. Tentative Conclusions.

The formula for the WKE, time-delay in terms of a

potential is identical to the formula for obtaining the height

of a hill (essentially V(x)) from the time required for a ball

rolled up the hill with a given velocity to come down again to

the point at which the ball started rolling. Generally, the

higher the initial velocity is, the greater the time of return

will be because the ball will have to roll higher up the hill.

In wave terms, the WKB time-delay will generally increase with

increasing k. Our examples of potentials given below will

show that the UKB behavior for the time-delay will be as ex-

pected. However, the exact time-delay will decrease with in-

creasing k no matter how slowly growing the potential of the

given class is. In the simplest case, discussed in some de-

tail below; the WKB time-delay bears little relationship to

the exact, full-wave time-delay.

Before we give the examples, we can draw some conclu-

sions from the comparison of full-wave and NKB theory. It is
mathematically possible to have layers for which the I1 time-

delay bears no relation to the full-wave time delay. In prac-

tice one usually observes time-delays which increase with k in

analogy to the W1B behavior. While these time-delays may
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arise from potentials for which the KKB approximation is rea-

sonably good, from the inverse point of view one will not krow

that the observed time-delay (which coincides with the exact

time delay for the potential) can be used in a W.YB approxima-
tion without comparing the potential from the TYJB approxima-

tion with that of the full-wave theory. Since it is necessary

to use the full wave theory for the comparison, and since in
principle and probably in practice (when the numerical methods

are fully established), it is as easy to use the full-wave in-

version method as the WKB inversion, one should use the exact
method in the first place to prevent error. The M15 method

may also be used afterward if one chooses, but only to see

how well it predicts the exact potential.

3.3 Examples

Our examples arise through the choice of a suitable

set of reflection coefficients b(k). Let us consider the

Gelfand-Levitan equations (3.26) and (3.29). It is easy to

see that near z = z0 , V(z) is given by

d +) -2ikz

V(z) = 2 (27) - l f b(k) e kz dk. (3.35)

The class of reflection coefficients we shall con-

sider are dependent on two parameters, a positive constant a,

and a positive integer n:

nb(k) = - (ia) (3.36)(k+ia)n  (.

We have picked b(k) so that it satisfies

b(O) = - 1. (3.37)

This condition is necessary for V(z) to be positive. All the

corresponding potentials Vn(z) are zero for negative values

of z. We thus are taking z0 to be zero and regarding the

47



transmitter to be at the bottom end of the layer. [The gener-

alization to positive z0 simply adds a time-delay to free-

space propagation from the transmitter at z = 0 to the bottom

of the layer at z = zo.] It is also seen that (in the vicin-

ity of z 0 0) A? n (Z) is of the form

Vn (z) = Cnzn 2 , z greater than or equal to zero, (3.38)

for n greater than or equal to 2 where Cn is a real positive

constant. For n = 2 we see from (3.35) that the potential

has a jump at z 0 from zero for z less than zero to C2 for z

greater than but near zero. For n = 3 the potential is con-

tinuous at zero and I3(0) = 0. For n = 4, Vn and the first

derivative of Vn are zero at z = 0 and are continuous there.

As one takes higher values of n an increasing number of deriv-

atives are continuous and zero at z = 0. Thus one can make

the potential increase from zero to finite values as slowly as

one wishes. High values of n correspond to increasingly

smoother variations of Vn from zero to positive values. In
regions sufficiently near z = 0, where Vn varies in as smooth

a manner as one wishes, one might expect the best chances of

the ;7KB time-delay to be valid. ITowever, for all values of k

and n the exact time delay decreases, as we shall show shortly.

A possible explanation for the failure of the 4YB

method is the fact that in addition to requiring that the in-

dex of refraction vary slowly and not be too small, the value

of k should not be small [Budden, 1966]. For low value of n,

k is small compared to the scale a, but for high values of n,

k can be made increasingly large and the WRIB procedure goes
through formally but still gives the wrong character for the

time-delay as compared with the exact time-delay. These re-

sults suggest more strongly than ever that the WKP inverse

method requires a closer scrutiny even where it is believed

to be valid.
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The time-delay Tn(k) arising from the reflection co-

efficient of Eq. (3.36) is readily found to be

T (k) na (3.39)n k2+a2

The exact potential Vn (z) have been computed and

sketched by Pechenick and Cohen [1981]. As n increases the

potentials, which may be considered to be a two-parameter fam-

ily of functions depending on n and a, are all positive ard,

for n equal to or greater than 3 start at zero for z = 0 and

have a suitable number of derivatives vanishing at z = 0.

The potentials increase monotonically, reach a maximum and

then decay exponentially for large z. For a given value of a,

higher values of n correspond to flatter potentials, i.e. the

effective base of the potential increases with respect to the

height.

In Figure 19, we have plotted V3 (x). To the eye it

looks like a "normal" potential. One would think that the

WKB calculation of the time delay for that portion of the po-

tential for z between 0 and the value of z corresponding to

the maximum would be a good approximation. In Figure 20, the
exact and WKB values of the time-delay are plotted as a func-

tion of k. The discrepancy between the two time delays is

astonishingl The WKB time-delay does not even approach the

values of the exact one for most values of k. Thus, even for

potentials which look as though WKB time delay ought to be

valid, this is not generally the case.

It should be noted that V3 (x) does not model the

ionosphere at all well because of the length to height ratio,

which indeed precludes the use of the EMB method. A better

exact model, which we are trying to obtain, will be more use-

ful for comparing the UYB and exact methods.
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Figure 19. Plot of V3 (z)
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3.4 Future Research Directions

Having seen that potentials exist to which the WKB

approximation can not be applied, we intend to introduce po-
tentials for which the WKB time-delay has some of the proper-
ties of the exact time-delay to find the domain where WKB has

meaning.

In addition to obtaining potentials for which the
WKB time-delay makes some sense, we shall give examples for

even odder behavior of the exact time-delay than those of the

present report. They will include potentials for which the

time-delay is zero for all k and potentials for which the
time-delay is negative: causality seems to be violated. The

potentials for these unexpected time-delays look "normal".

The result of these investigations appear to indi-
cate that in many circumstances time-delay is not a particu-
larly useful notion. More useful will be the shape of the

returned wave for which the shape of the pulse is known. By
deconvolution techniques the reflection coefficient b(k) can

be found and one can then use the full-wave solutions. These

possibilities will also be examined from a numerical point of
view.
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